
 International Journal of advanced studies in Computer Science and Engineering

 IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 21

Feb. 28

Genetic algorithm: an overview and its application

 Vijay Kumar Verma1 Biresh Kumar2

 Asst. Professor Dept. of CSE NSIT, Bihta, Patna Research Scholar NIT Patna

Abstract: There exist many problems for which there are not any

clear and precise method by means which optimal or best solution

can be found out. These type of problem fall into category of

combinatorial problems as they can only be solved through random

search techniques. The difficulty is that many problems have so many

possible solutions and trying all of them for optimal solution is

practically not feasible. To cope up with these types of problems

scientists have applied various search methods and heuristics. These

are nothing but optimization process applied in several domains such

as computer science, computational biology, drug designing and

other fields. Genetic algorithm is one such optimization process

inspired by laws of natural evolution. This paper demonstrates the

basic understanding of Genetic algorithm and principle that works

behind it with some of its application and basic implementation using

tool R.

Keywords— GA, Optimization, Search Heuristics, R, Genetics,

natural selection, Combinatorial problems, TSP, Knapsack

I. INTRODUCTION

GA (Genetic Algorithm) is an optimization and search techniques

based on the principles of Genetics and Natural Selection. Natural

selection always tends to pick the fittest individuals dominating over

the weaker ones and it always favours the positive adaptation

resulting into the best one to survive in the long run. This is what

depicted in Darwin’s Survival of the fittest theory. GA is a part of the

evolutionary optimizing computing inspired by Darwin’s survival of

the fittest.GA is an adaptive search heuristics that mimics the process

of natural evolution which uses techniques like Selection, Crossover,

Inheritance and Mutation.GA represents an intelligent exploitation of

a random search used to solve Optimization problems. It is one of the

rapidly growing areas of Artificial Intelligence.

Basic understanding:

In optimization process solving problems means finding best solution

among others. TSP (travelling salesman problem) is one such

combinatorial problem where optimization can be applied. TSP states

that a salesman has to go on a tour around several cities. Each city

has to be visited only once. What is the shortest tour or path he needs

to pick? Mathematically it is proven that for n cities the number of

possible tour is (n-1)!; For 9 cities the total possible combination is

362,880. Solution to a problem like TSP is a search problem as it

explores many possible tours to find the optimal one. The set of

possible solutions for a given problem is known as search space (or

state space). Optimization is the process of finding the best solution

and it is vastly used in Engineering and Mathematics domain. The

problem specific to domain is first formulated as mathematics model

function and finding the best solution requires the parameter that

optimizes the system performance. An optimization problem thus

can be defined as finding values of the variables that minimize or

maximize the objective function while satisfying the constraint. The

solution to optimization problem is based on mainly 3-significant

points:

1. Optimization Function (Which is to be minimized or

maximized).

2. A set of variables that affect the Optimization function.

3. A set of Constrained which must be satisfied.

Genetic Algorithms are one such evolutionary optimization process

that takes potentially huge search spaces and parallel processing

them, looking for optimal combination of things, the solution one

might not find otherwise. GA offer significant benefit over many

other typical search optimization techniques like – linear

programming, Heuristic, DFS, BFS, Simulated annealing, Hill

climbing.

Biological Background:

There are certain set of rules that describe how every organisms

are built. All living organism consist of cells which are fundamental

unit of life. In each cell there is same set of Chromosome.

Chromosomes are strings of DNA which serve as model for whole

organism. Computationally it can be considered as array of genes.

Each Gene encodes a particular character called traits (e.g. colour of

eyes etc.).Each gene has its own position in chromosome called

Locus. The complete set of genetic material is called Genome

.Particular set of genes in a genome is called genotype. The physical

expression of genotype is called Phenotype. When two organism

mate they share their genes this process is called Crossing over or

Recombination. The newly created Offspring may mutate. The

mutation means change in a bit of DNA pattern.

Working Methodologies:

The space of all feasible solution among which the desired

solution resides is called search space or state space. Each point in

the search space represents one possible solution. Each possible

solution can be marked by its fitness for the problem. This task is

actually done by fitness function that assigns fitness value to the

individual and it is problem specific. The GA looks for the best

solution among a number of possible solutions represented by one

point in the search space. Looking for a solution is then equal to

looking for some extreme value (maximum or minimum) in the

search space.GA generates other points (possible solutions) as

evolution proceeds.

 International Journal of advanced studies in Computer Science and Engineering

 IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 22

Feb. 28

II. Correlating Terminologies with GA:

Population: set of individuals (having same length) which can be

tentative solution for the search problem; Individuals: chromosomes;

Gene: chromosome contains the solution in the form of a gene;

Fitness: The value assigned to an individual based on how far or

close an individual is from solution; Fitness Function: A problem

specific function that assign fitness value to an individual. Crossing

over: picking two fittest individual from search space intermingling

their chromosome to create two new offspring; Mutation: A random

change in a bit pattern of a gene; Selection: Selecting individual for

next generation. GA begins with a set of solutions (represented by the

chromosome) for a particular problem called the population.

Solutions from population are selected for crossing over based on

their fitness value to form new solutions. This is repeated until some

condition is satisfied.

1. Basic Steps:

Start: Generate n-chromosome population (suitable solution for the

problem)

Fitness criteria: Evaluate the fitness f(x) of each chromosome x in

the population.

Generate population: use the natural evolution process to generate

the new individuals:

1. Selection

2. Crossover

3. Mutation

4. Acceptance

Test: if the end condition is satisfied stop and return the best solution

in the current population otherwise repeat the process from Fitness

criteria.

1.1 Logic Flow:

1.2 Pseudo Code:

BEGIN

 Initialize

 Evaluate

 Repeat until (Condition)

1. Select parents

2. Recombine

3. Mutate

4. Select individuals from next Generation

END

2. Problem Encoding: it concerns with how problems can be

formulated. One major challenge in GA is to represent each

individual by its genes. The major task is to identify the simplest

elements (building blocks) of which a solution may consist, and

assign a letter (or a number) to each element, we called it gene (each

letter/number). A chromosome is an array of genes and a gene

represent some data. A string of genes can be represented by (Gene)i.

and ((Gene)i)n can represent chromosome of an individual. Binary

string is one common approach to encode a solution. In binary form a

gene looks like: 11001101 and chromosome representative of an

individual looks like:

Gene1 Gene2 Gene3

11001101 10101111 01110011

Each bit in the string represents some characteristics of the solution.

A chromosome should in some way contain certain information about

solution which it represents. There are many other way of encoding

the solution depending upon problem domain (i.e. encoding scheme

totally depend on the problem to work on). Some encoding schemes

are:

 International Journal of advanced studies in Computer Science and Engineering

 IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 23

Feb. 28

3.Encoding Constraints:
Chromosome should all of the same types (bit string).

Chromosome should be of the same length.

Encoding in some real prospect:

3.1 8-queen’s problem: this problem can be encoded as Integer

ranging from 1 to 8 where each number represents the position of

queen in chess board column. The one possible chromosome

configuration might look like: 23451687. Here the first bit

represent the position of queen in 2nd column that can have 8-

different position ranging from R i=1 to 8C2

 3.2 word guessing problem: here GA has to find the certain

word (say “evolution”) of fixed length (9 in this case). This

problem can be encoded as character ranging from a to z and each

chromosome is of length 9.

e.g. evoltunio, evlotkpni.

3.3 TSP (travelling salesman problem): cities can be represented

through gene in a chromosome. For instance 4 - countries say

India, China, Korea, Japan can be encoded as an individual like:

Tour1=ICKJI

Tour2=ICJK

3.4 Graph Coloring Problem: This also known as n-colourability

decision problem, it states that whether all nodes of a Graph G can be

coloured in such a way that no two adjacent nodes have the same

color and only n colours are used. GA can be applied to solve the

problem like this. The chromosome string will be of the length equals

to the number of node in the graph and each node may take up to n-

color. Graph adjacency matrix (n x n) can be used for decision

making for fitness evaluation.

in this case length of chromosome will be typically of 5 and in same

order as per the graph numbering and each node may accept up to n-

colour. For n=3(say R, G, B), the chromosome configuration might

look like: RGBRG, RGBGR, GBRGR

4. Crossing Over:

It is one of the most significant features in GA. It is responsible for

exchange of genetic material between two parents. It can be single

point, double point, uniform.

4.1 Single Point:

P1

100^11011

 P2

001^10101

=

O1

10010101

O2

00111011

4.2 Double point:

P1

100^11011^1110

P2

001^10101^1011

=

O1

100101011110

O2

001110111011

4.3 Uniform crossover: uniform crossover means just a random

exchange of genes between two parents.

P1: 100110111110 = O1: 100010111111

P2:001001011011 = O2: 001101011010

^: crossing over point, Pi=Parents, Oi=Offspring

5. Mutation: A randomly chosen gene (or several genes) is changed

to some other gene (mutate). For example, mutation of genes 3 in the

offspring O will give:

O = 1 0 0 0 1 1 1

Om =1 0 1 0 1 1 1

Mutation helps in avoiding local maximum and it occurs at variable

rate.

6. Selection: Once the fitness of whole population in calculated there

should be a selection function which tries to pick the fittest individual

for reproduction.

There are several strategies for selection some of them are Roulette

Wheel, Ranked selection.

I

C

K

J

 ICKJI

I

C

K

J

 ICJKI

1 3

2 4

5

 International Journal of advanced studies in Computer Science and Engineering

 IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 24

Feb. 28

Roulette Wheel: In this selection process each member assigned a

space in roulette according to their fitness. The member with the

highest fitness score has the greatest chances to be picked. This

selection techniques works for the GA which maximizes the function.

7. Basic demonstration:

Finding the global maximum of function 0<x<=31 for x2 This

problem can be best represented as binary encoding with 5 bits

pattern.

Individu

al No

Encodings(genoty

pe)

Phenotyp

es

(X value)

F(X)=X
2

Pselectio

n

(fi/∑fi)

1 0 1 1 0 1 13 169 0.14

2 1 1 0 0 0 24 576 0.49

3 0 1 0 0 0 8 64 0.06

4 1 0 0 1 1 19 361 0.31

 Roulette wheel probability selection chart.

∑f(x)=1170

Avg=293 and Max=576

As the probability selection favours highest value, the two fittest

individual selected for reproduction are individual 2 and 4

respectively. However a random selection might result into

individual say 1, 4, 2, 2.

The next generation table can be formulated as

Selected

Individuals

Crossover

Point(random)

New

Population

X F(X)=X2

1 1 0 0^ 0 4 11001 25 625

1 0 0 1^ 1 4 10010 18 324

1 1^ 0 0 0 2 11101 29 841

0 1 ^1 0 1 2 01000 8 64

∑f(x)=1854

Avg=463 and Max=841

The above result shows that GA always favours the fittest individual

and it approaches global maximum.

Ranking methods: choose individuals according to fitness rank.

Tournament selection: select best among a randomly selected

subset.

III. Complete Illustration (Knapsack Problem):

In this problem we have to fill the knapsack of capacity W with a

given set of items I1,I2,I3…In having weight W1,W2,W3…Wn in

such a manner that the total weight of the items should not exceed the

knapsack capacity and maximum possible value can be obtained.

1. Simplified overview:

There is a Knapsack with maximum weight capacity of 20 kg. There

are 7 items that one can carry in knapsack. Each item has certain

benefits and weight attach to it and you can carry only one of each

item. Your objective is to maximize points seeing in mind the weight

constraint with objective of scoring maximum points.

Items Benefits Weight

A 10 1

B 20 5

C 15 10

D 2 1

E 30 7

F 10 5

G 30 1

2. Problem encoding:

This problem can be best encoded as binary bit patterns where each

bit represents the presence or absence of item in knapsack, for

instance the one possible configuration can be represented as

1100111 where each bit represent whether to carry or not to carry

item in knapsack and here the total no. of bit is equals to the total no.

of item.

I.e. Encoding: 0 = not exist, 1 = exist in the Knapsack

Item A B C D E F G

Configuration

(Chromosome)

1 1 0 0 0 1 1

Exist (in knapsack)? Y Y N N N Y Y

 International Journal of advanced studies in Computer Science and Engineering

 IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 25

Feb. 28

3. Population Generation: Generate random 7 bit population of n-

chromosome.

1) 1010101

2) 1110001

3) 1001110

4. Fitness evaluation:

Item A B C D E F G

Chromosome

(1)

1 0 1 0 1 0 1

Points 10 15 30 30

Weight 1 10 7 1

∑Weights=19, ∑points=85

Item A B C D E F G

Chromosome

(2)

1 1 1 0 0 0 1

Points 10 20 15 30

Weight 1 5 10 1

∑Weights=17, ∑points=75

Item A B C D E F G

Chromosome

(3)

1 0 0 1 1 1 1

Points 10 2 30 10 30

Weight 1 1 7 5 1

∑Weights=14, ∑points=82

5. Crossing over:

The two fittest individual selected for crossing over are:

Selected

Individuals

Crossover

Point(random)

New

Population

∑Point ∑Wt

101^0101
3 1011111 97 15

100^1111
3 1000101 70 9

The new offspring generated (1011111) has highest fitness value.

From one generation to next GA tends towards optimal solution by

eliminating the weaker one and fittest always have the chance to

reproduce.

In GA fitness function and Selection process eliminates the bad

solution from the good one. Offspring inherit the properties of good

solutions are retain. The good individual may survive for many

generations (elitism) and the good part of chromosome may be kept

intact known as schema.

6. R implementation [25]:

Library used: genalg Editor: RStudio

Function use for demonstration rbga.bin R based genetic algorithm

for binary configuration. The major parameter requires are:

Size the number of genes in the

chromosome.

PopSize the population size.

Iters the number of iterations.

mutationChance the chance that a gene in the

chromosome mutates. By default

1/(size+1).

Elitism the number of chromosomes that

are kept into the next generation.

By default is about 20% of the

population size.

 International Journal of advanced studies in Computer Science and Engineering

 IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 26

Feb. 28

Assigning basic
items, benefits
and weight
constrain in
Knapsack

ItemsKnapsack=c(“A”,”B”,”C”,”D”,”E”,”F”,”

G”)

ItemsBenefit=c(10,20,15,2,30,10,30)

ItemsWeight=c(1,5,10,1,7,5,1)

WeightConstrain=20

Frame generation
using dataset
.frame and
assigning it to
variable dataset.

dataset=data.frame(ItemsKnapsack,ItemsBenefi

t,ItemsWeight)

Calculating
chromosome(111
0011) benefits

chromosome=1110011

cat(chromosome %*% dataset$ItemsBenefit)

Fitness function
declaration

FitnessEval = function(x)

 {

 Chromosome_ItemBenifits = x %*%

dataset$ItemsBenefit

 Chromosome_ItemsWeight = x %*%

dataset$ItemsWeight

 if (Chromosome_ItemsWeight >

WeightConstrain)

 return(0)

 else

 return(-Chromosome_ItemBenifits)

}

Iteration
parameter

Iter=100

Assigning
arguments to
main function of
GA

GAKnapsack = rbga.bin(size = 7, popSize = 200,

iters = Iter, mutationChance = 0.01,

elitism = T, evalFunc = FitnessEval)

Checking
statistics of model

cat(summary.rbga(GAKnapsack))

Checking solution cat(summary(GAKnapsack))

Output GA Settings

 Type = binary chromosome

 Population size = 200

 Number of Generations = 100

 Elitism = TRUE

 Mutation Chance = 0.01

GA Results

 Best Solution : 1 1 0 1 1 1 1

Benefits=102

If Knapsack weight is constraint to 18 the GAKnapsack model

predict the best solution : 1 1 0 1 1 0 1 with benefits point 92.

IV. Application of GA:

Some important areas where it applied significantly are [13],[24]:

Conformational analysis: in medicinal chemistry; Docking: in drug

designing; Scheduling: Facility, Production, Job, and Transportation

Scheduling; Design: Circuit board layout, Communication Network

design; Machine Learning: Designing Neural Networks, Classifier

Systems, Learning rules; Robotics: Trajectory Planning, Path

planning; Combinatorial Optimization: TSP, Bin Packing, Set

Covering, Graph Bisection, Routing; Image Processing: Pattern

recognition; Business: Economic Forecasting; Medical: Studying

health risks for a population exposed to toxins; Bioinformatics:

MSA[20], Gene finding, Motif discovery; Clustering[19]: using

genetic algorithms to optimize a wide range of different fit-functions.

V. Conclusion:

Genetic algorithms provide a very strong and effective means to

model population genetics for different problem domains. It provides

a flexible platform influenced from naturals evolution to model

various diversified problems in an effective manner. It is one of the

highly growing areas in the area of artificial intelligence and lots of

research is going on to exploit its potential to minimize the huge

search space. GA can potentially be applied with other optimization

techniques or heuristics to minimize the computation task once

candidate with strong fitness scores are identified.

This paper provides very basic and simple concept working behind

the principle of Genetic algorithm. Researchers have applied the

potential of GA to solve several computationally challenging issues

like Drug designing, Image processing and several other domain

mentions in application section. This paper explains a simple review

of GA using many scholastic articles, books and open contents over

internet with basic demonstration using R.

 International Journal of advanced studies in Computer Science and Engineering

 IJASCSE, Volume 3, Issue 2, 2014

www.ijascse.org Page 27

Feb. 28

References:

[1] Practical genetic algorithms Randy L. Haupt Sue Ellen

Haupt A

[2] Genetic algorithm Dr. Roman V Belavkin BIS3226.

[3] Goldberg, D. E. Genetic Algorithms in Search,

Optimization, and Machine Learning. Addison-Wesley,

Reading, MA, 1989.

[4] Koza, J. R. Genetic Programming: On the Programming of

Computers by Means of Natural Selection. The MIT Press,

Cambridge, MA, 1992.

[5] Devillers J Ed. Genetic algorithms in molecular modeling.

Academic Press: New York, 1996.

[6] Kenneth A. De Jong Evolutionary Computation A Unified

Approach.

[7] Banzhaf, W., P. Nordin, R. E. Keller, and F. D. Francone

(1998). Genetic Programming –An Introduction; On the

Automatic Evolution of Computer Programs and its

Applications. San Mateo, CA: Morgan Kaufmann.

[8] Vose, M. (1995). Modeling simple genetic algorithms.

Evolutionary Computation 3(4), 453–472.Whitley, T.

Starkweather, and C. Bogart, "Genetic Algorithm and

Neural Networks: Optimizing Connections and

Connectivity", Parallel Computing.
[9] Back, T. and H.-P. Schwefel (1993). An overview of

evolutionary algorithms for parameter optimization.

Evolutionary Computation

[10] Michalewicz, Z. (1994). Genetic Algorithms + Data

Structures = Evolution Programs. New York: Springer-

Verlag.

[11] Fundamentals of Genetic Algorithm by RC chakraborty.

[12] A Field Guide to Genetic Programming Riccardo Poli

Department of Computing and Electronic Systems

University of Essex – UK , William B. Langdon

Departments of Biological and Mathematical Sciences

University of Essex – UK Nicholas F. McPhee Division of

Science and Mathematics University of Minnesota, Morris

USA.

[13] Introduction to Genetic Algorithms Theory and

Applications The Seventh Oklahoma Symposium on

Artificial Intelligence November 19, 1993.

[14] Foundations of Genetic Algorithms, Gregory Rawlins,

Editor, Morgan Kaufmann, 1991.Whitley, T. Starkweather,

and C. Bogart, "Genetic Algorithm and Neural Networks:

Optimizing Connections and Connectivity", Parallel

Computing.

[15] R Based Genetic Algorithm Egon Willighagen.

[16] Radenbaugh, A.J. (2005). Applications of genetic

algorithms in computing architectures. San Jose State

University, Department of Computer Science, Course 247:

Computer Architecture, Dr. Chun.

[17] Cramer, N. L. "A Representation for the Adaptive

Generation of Simple Sequential Programs." In

Proceedings, International Conference on Genetic

Algorithms and their Applications, July 1985 [CMU].

pp. 183-187.

[18] A Field Guide to Genetic Programming by Poli, Langdon,

McPhee

[19] Auffarth, B. (2010). Clustering by a Genetic Algorithm

with Biased Mutation Operator. WCCI CEC. IEEE, July

18–23, 2010.

[20] Gondro C, Kinghorn BP (2007). "A simple genetic

algorithm for multiple sequence alignment". Genetics and

Molecular Research 6 (4): 964–982.

[21] Willett P (1995). "Genetic algorithms in molecular

recognition and design". Trends in Biotechnology 13 (12):

516–521.

[22] Wong, K., Leung, K., and Wong, M. 2010. Protein

structure prediction on a lattice model via multimodal

optimization techniques. GECCO 2010: 155-162.

[23] Genetic algorithm theory and application by Ulrich

Bodenhofer.

[24] http://en.wikipedia.org/wiki/Genetic_algorithm.

[25] R Bloggers.

