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Abstract: There exist many problems for which there are not any 

clear and precise method by means which optimal or best solution 

can be found out. These type of problem fall into category of 

combinatorial problems as they can only be solved through random 

search techniques. The difficulty is that many problems have so many 

possible solutions and trying all of them for optimal solution is 

practically not feasible. To cope up with these types of problems 

scientists have applied various search methods and heuristics. These 

are nothing but optimization process applied in several domains such 

as computer science, computational biology, drug designing and 

other fields. Genetic algorithm is one such optimization process 

inspired by laws of natural evolution. This paper demonstrates the 

basic understanding of Genetic algorithm and principle that works 

behind it with some of its application and basic implementation using 

tool R. 
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I. INTRODUCTION 

GA (Genetic Algorithm) is an optimization and search techniques 

based on the principles of Genetics and Natural Selection. Natural 

selection always tends to pick the fittest individuals dominating over 

the weaker ones and it always favours the positive adaptation 

resulting into the best one to survive in the long run. This is what 

depicted in Darwin’s Survival of the fittest theory. GA is a part of the 

evolutionary optimizing computing inspired by Darwin’s survival of 

the fittest.GA is an adaptive search heuristics that mimics the process 

of natural evolution which uses techniques like Selection, Crossover, 

Inheritance and Mutation.GA represents an intelligent exploitation of 

a random search used to solve Optimization problems. It is one of the 

rapidly growing areas of Artificial Intelligence. 

Basic understanding: 

In optimization process solving problems means finding best solution 

among others. TSP (travelling salesman problem) is one such 

combinatorial problem where optimization can be applied. TSP states 

that a salesman has to go on a tour around several cities. Each city 

has to be visited only once. What is the shortest tour or path he needs 

to pick? Mathematically it is proven that for n cities the number of 

possible tour is (n-1)!; For 9 cities the total possible combination is 

362,880. Solution to a problem like TSP is a search problem as it 

explores many possible tours to find the optimal one. The set of 

possible solutions for a given problem is known as search space (or 

state space). Optimization is the process of finding the best solution 

and it is vastly used in Engineering and Mathematics domain. The 

problem specific to domain is first formulated as mathematics model 

function and finding the best solution requires the parameter that 

optimizes the system performance. An optimization problem thus 

can be defined as finding values of the variables that minimize or 

maximize the objective function while satisfying the constraint. The 

solution to optimization problem is based on mainly 3-significant 

points: 

1. Optimization Function (Which is to be minimized or 

maximized). 

2. A set of variables that affect the Optimization function. 

3. A set of Constrained which must be satisfied. 

Genetic Algorithms are one such evolutionary optimization process 

that takes potentially huge search spaces and parallel processing 

them, looking for optimal combination of things, the solution one 

might not find otherwise. GA offer significant benefit over many 

other typical search optimization techniques like – linear 

programming, Heuristic, DFS, BFS, Simulated annealing, Hill 

climbing. 

Biological Background: 

There are certain set of rules that describe how every organisms 

are built. All living organism consist of cells which are fundamental 

unit of life. In each cell there is same set of Chromosome. 

Chromosomes are strings of DNA which serve as model for whole 

organism. Computationally it can be considered as array of genes. 

Each Gene encodes a particular character called traits (e.g. colour of 

eyes etc.).Each gene has its own position in chromosome called 

Locus. The complete set of genetic material is called Genome 

.Particular set of genes in a genome is called genotype. The physical 

expression of genotype is called Phenotype. When two organism 

mate they share their genes this process is called Crossing over or 

Recombination. The newly created Offspring may mutate. The 

mutation means change in a bit of DNA pattern. 

 

Working Methodologies: 

The space of all feasible solution among which the desired 

solution resides is called search space or state space. Each point in 

the search space represents one possible solution. Each possible 

solution can be marked by its fitness for the problem. This task is 

actually done by fitness function that assigns fitness value to the 

individual and it is problem specific. The GA looks for the best 

solution among a number of possible solutions represented by one 

point in the search space. Looking for a solution is then equal to 

looking for some extreme value (maximum or minimum) in the 

search space.GA generates other points (possible solutions) as 

evolution proceeds. 
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II. Correlating Terminologies with GA: 
 

Population: set of individuals (having same length) which can be 

tentative solution for the search problem; Individuals: chromosomes; 

Gene: chromosome contains the solution in the form of a gene; 

Fitness: The value assigned to an individual based on how far or 

close an individual is from solution; Fitness Function: A problem 

specific function that assign fitness value to an individual. Crossing 

over: picking two fittest individual from search space intermingling 

their chromosome to create two new offspring; Mutation: A random 

change in a bit pattern of a gene; Selection: Selecting individual for 

next generation. GA begins with a set of solutions (represented by the 

chromosome) for a particular problem called the population. 

Solutions from population are selected for crossing over based on 

their fitness value to form new solutions. This is repeated until some 

condition is satisfied.  

 

1. Basic Steps: 

 

Start: Generate n-chromosome population (suitable solution for the 

problem) 

Fitness criteria: Evaluate the fitness f(x) of each chromosome x in 

the population. 

Generate population: use the natural evolution process to generate 

the new individuals: 

1. Selection 

2. Crossover 

3. Mutation 

4. Acceptance 

Test: if the end condition is satisfied stop and return the best solution 

in the current population otherwise repeat the process from Fitness 

criteria. 

 
1.1 Logic Flow: 

 

 
 

 

 

 

 

 

 

 

 

1.2 Pseudo Code:  

BEGIN 

 Initialize 

 Evaluate 

 Repeat until (Condition) 

1. Select parents 

2. Recombine 

3. Mutate 

4. Select individuals from next Generation 

END 

2. Problem Encoding: it concerns with how problems can be 

formulated. One major challenge in GA is to represent each 

individual by its genes. The major task is to identify the simplest 

elements (building blocks) of which a solution may consist, and 

assign a letter (or a number) to each element, we called it gene (each 

letter/number). A chromosome is an array of genes and a gene 

represent some data. A string of genes can be represented by (Gene)i. 

and ((Gene)i)n can represent chromosome of an individual. Binary 

string is one common approach to encode a solution. In binary form a 

gene looks like: 11001101 and chromosome representative of an 

individual looks like: 

 

Gene1 Gene2 Gene3 

11001101 10101111 01110011 

 

Each bit in the string represents some characteristics of the solution. 

A chromosome should in some way contain certain information about 

solution which it represents. There are many other way of encoding 

the solution depending upon problem domain (i.e. encoding scheme 

totally depend on the problem to work on). Some encoding schemes 

are: 
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3.Encoding Constraints: 
Chromosome should all of the same types (bit string).        

Chromosome should be of the same length. 

Encoding in some real prospect: 

 

3.1 8-queen’s problem: this problem can be encoded as Integer 

ranging from 1 to 8 where each number represents the position of 

queen in chess board column. The one possible chromosome 

configuration might look like: 23451687. Here the first bit 

represent the position of queen in 2nd column that can have 8-

different position ranging from R i=1 to 8C2 

 

 3.2 word guessing problem: here GA has to find the certain 

word (say “evolution”) of fixed length (9 in this case). This 

problem can be encoded as character ranging from a to z and each 

chromosome is of length 9. 

e.g.  evoltunio, evlotkpni. 

 

3.3 TSP (travelling salesman problem): cities can be represented 

through gene in a chromosome. For instance 4 - countries say 

India, China, Korea, Japan can be encoded as an individual like: 

Tour1=ICKJI 

Tour2=ICJK 

 

 

 

 

 

 

3.4 Graph Coloring Problem: This also known as n-colourability 

decision problem, it states that whether all nodes of a Graph G can be 

coloured in such a way that no two adjacent nodes have the same 

color and only n colours are used. GA can be applied to solve the 

problem like this. The chromosome string will be of the length equals 

to the number of node in the graph and each node may take up to n-

color. Graph adjacency matrix (n x n) can be used for decision 

making for fitness evaluation. 

 

 

 

 

 

 

 

 

in this case length of chromosome will be typically of 5 and in same 

order as per the graph numbering and each node may accept  up to n-

colour. For n=3(say R, G, B), the chromosome configuration might 

look like: RGBRG, RGBGR, GBRGR 

 

4. Crossing Over: 

It is one of the most significant features in GA. It is responsible for 

exchange of genetic material between two parents. It can be single 

point, double point, uniform. 

 
 

4.1 Single Point:  

P1 

100^11011 

    P2 

001^10101 

 

= 

O1 

10010101 

O2 

00111011 

4.2 Double point: 

P1 

100^11011^1110 

P2 

001^10101^1011 

 

= 

O1 

100101011110 

O2 

001110111011 

4.3 Uniform crossover: uniform crossover means just a random 

exchange of genes between two parents. 

P1: 100110111110 = O1: 100010111111 

P2:001001011011 = O2: 001101011010 

^: crossing over point, Pi=Parents, Oi=Offspring 

 

5. Mutation: A randomly chosen gene (or several genes) is changed 

to some other gene (mutate). For example, mutation of genes 3 in the 

offspring O will give: 

O = 1 0 0 0 1 1 1  

Om =1 0 1 0 1 1 1 

Mutation helps in avoiding local maximum and it occurs at variable 

rate. 

6. Selection: Once the fitness of whole population in calculated there 

should be a selection function which tries to pick the fittest individual 

for reproduction.  

 

There are several strategies for selection some of them are Roulette 

Wheel, Ranked selection. 
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Roulette Wheel: In this selection process each member assigned a 

space in roulette according to their fitness. The member with the 

highest fitness score has the greatest chances to be picked. This 

selection techniques works for the GA which maximizes the function. 

 

7.  Basic demonstration:  

 

Finding the global maximum of function 0<x<=31 for x2 This 

problem can be best represented as binary encoding with 5 bits 

pattern. 

 

Individu

al No 

Encodings(genoty

pe) 

Phenotyp

es 

(X value) 

F(X)=X
2 

Pselectio

n 

(fi/∑fi) 

1 0 1 1 0 1 13 169 0.14 

2 1 1 0 0 0 24 576 0.49 

3 0 1 0 0 0 8 64 0.06 

4 1 0 0 1 1 19 361 0.31 

 

 

             Roulette wheel probability selection chart. 

 

∑f(x)=1170 

Avg=293 and Max=576 

As the probability selection favours highest value, the two fittest 

individual selected for reproduction are individual 2 and 4 

respectively. However a random selection might result into 

individual say 1, 4, 2, 2. 

The next generation table can be formulated as 

 

Selected 

Individuals 

Crossover 

Point(random) 

New 

Population 

X  F(X)=X2 

1 1 0 0^ 0 4 11001 25 625 

1 0 0 1^ 1 4 10010 18 324 

1 1^ 0 0 0 2 11101 29 841 

0 1 ^1 0 1 2 01000 8 64 

 

  

 

 

 

∑f(x)=1854 

Avg=463 and Max=841 

 

The above result shows that GA always favours the fittest individual 

and it approaches global maximum. 

 

Ranking methods: choose individuals according to fitness rank. 

 

Tournament selection:  select best among a randomly selected 

subset. 

 

III. Complete Illustration (Knapsack Problem): 
 

In this problem we have to fill the knapsack of capacity W with a 

given set of items I1,I2,I3…In having weight W1,W2,W3…Wn in 

such a manner that the total weight of the items should not exceed the 

knapsack capacity and maximum possible value can be obtained. 

1. Simplified overview: 

 
There is a Knapsack with maximum weight capacity of 20 kg. There 

are 7 items that one can carry in knapsack. Each item has certain 

benefits and weight attach to it and you can carry only one of each 

item. Your objective is to maximize points seeing in mind the weight 

constraint with objective of scoring maximum points. 

 

Items Benefits Weight 

A 10 1 

B 20 5 

C 15 10 

D 2 1 

E 30 7 

F 10 5 

G 30 1 

 

2. Problem encoding: 

This problem can be best encoded as binary bit patterns where each 

bit represents the presence or absence of item in knapsack, for 

instance the one possible configuration can be represented as 

1100111 where each bit represent whether to carry or not to carry 

item in knapsack and here the total no. of bit is equals to the total no. 

of item. 

I.e. Encoding: 0 = not exist, 1 = exist in the Knapsack 

Item A B C D E F G 

Configuration 

(Chromosome) 

1 1 0 0 0 1 1 

Exist (in knapsack)? Y Y N N N Y Y 
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3. Population Generation: Generate random 7 bit population of n-

chromosome. 

1) 1010101 

2) 1110001 

3) 1001110 

4. Fitness evaluation: 

Item A B C D E F G 

Chromosome 

(1) 

1 0 1 0 1 0 1 

Points 10  15  30  30 

Weight 1  10  7  1 

∑Weights=19, ∑points=85 

Item A B C D E F G 

Chromosome 

(2) 

1 1 1 0 0 0 1 

Points 10 20 15    30 

Weight 1 5 10    1 

∑Weights=17, ∑points=75 

Item A B C D E F G 

Chromosome 

(3) 

1 0 0 1 1 1 1 

Points 10   2 30 10 30 

Weight 1   1 7 5 1 

 

∑Weights=14, ∑points=82 

 

 

 

 

5. Crossing over: 

The two fittest individual selected for crossing over are: 

Selected 

Individuals 

Crossover 

Point(random) 

New 

Population 

∑Point  ∑Wt 

101^0101 
3 1011111 97 15 

100^1111 
3 1000101 70 9 

 

The new offspring generated (1011111) has highest fitness value. 

From one generation to next GA tends towards optimal solution by 

eliminating the weaker one and fittest always have the chance to 

reproduce. 

In GA fitness function and Selection process eliminates the bad 

solution from the good one. Offspring inherit the properties of good 

solutions are retain. The good individual may survive for many 

generations (elitism) and the good part of chromosome may be kept 

intact known as schema. 

6. R implementation [25]: 

Library used: genalg Editor: RStudio 

 

Function use for demonstration rbga.bin R based genetic algorithm 

for binary configuration. The major parameter requires are: 

 

Size the number of genes in the 

chromosome. 

PopSize the population size. 

Iters the number of iterations. 

mutationChance the chance that a gene in the 

chromosome mutates. By default 

1/(size+1). 

Elitism the number of chromosomes that 

are kept into the next generation. 

By default is about 20% of the 

population size. 
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Assigning basic 
items, benefits 
and weight 
constrain in 
Knapsack 

 
ItemsKnapsack=c(“A”,”B”,”C”,”D”,”E”,”F”,”

G”) 

ItemsBenefit=c(10,20,15,2,30,10,30) 

ItemsWeight=c(1,5,10,1,7,5,1) 

WeightConstrain=20 

 

Frame generation 
using dataset 
.frame and 
assigning it to 
variable dataset. 
 

dataset=data.frame(ItemsKnapsack,ItemsBenefi

t,ItemsWeight) 

 
 

Calculating 
chromosome(111
0011) benefits 

chromosome=1110011 

cat(chromosome  %*% dataset$ItemsBenefit) 

 

Fitness function 
declaration 

FitnessEval = function(x) 

 { 

  Chromosome_ItemBenifits = x %*% 

dataset$ItemsBenefit 

  Chromosome_ItemsWeight = x %*% 

dataset$ItemsWeight 

   if (Chromosome_ItemsWeight > 

WeightConstrain)  

               return(0) 

   else 

   return(-Chromosome_ItemBenifits) 

} 
 

Iteration 
parameter 

Iter=100 
 

Assigning 
arguments to 
main function of 
GA 

GAKnapsack = rbga.bin(size = 7, popSize = 200, 

iters = Iter, mutationChance = 0.01,  

elitism = T, evalFunc = FitnessEval) 

 

Checking 
statistics of model 

cat(summary.rbga(GAKnapsack)) 

Checking solution cat(summary(GAKnapsack)) 

 

Output GA Settings 

  Type   = binary chromosome 

  Population size  = 200 

  Number of Generations = 100 

  Elitism  = TRUE 

  Mutation Chance       = 0.01 

GA Results 

 Best Solution : 1 1 0 1 1 1 1  

Benefits=102 

 

 

 

If Knapsack weight is constraint to 18 the GAKnapsack model 

predict the best solution : 1 1 0 1 1 0 1 with benefits point 92.  

 

IV. Application of GA: 

Some important areas where it applied significantly are [13],[24]:  

Conformational analysis: in medicinal chemistry; Docking: in drug 

designing; Scheduling: Facility, Production, Job, and Transportation 

Scheduling; Design: Circuit board layout, Communication Network 

design; Machine Learning:  Designing Neural Networks, Classifier 

Systems, Learning rules; Robotics:  Trajectory Planning, Path 

planning; Combinatorial Optimization: TSP, Bin Packing, Set 

Covering, Graph Bisection, Routing; Image Processing:  Pattern 

recognition; Business: Economic Forecasting; Medical: Studying 

health risks for a population exposed to toxins; Bioinformatics: 

MSA[20], Gene finding, Motif discovery; Clustering[19]: using 

genetic algorithms to optimize a wide range of different fit-functions. 

 

 

V. Conclusion: 

 

Genetic algorithms provide a very strong and effective means to 

model population genetics for different problem domains. It provides 

a flexible platform influenced from naturals evolution to model 

various diversified problems in an effective manner. It is one of the 

highly growing areas in the area of artificial intelligence and lots of 

research is going on to exploit its potential to minimize the huge 

search space. GA can potentially be applied with other optimization 

techniques or heuristics to minimize the computation task once 

candidate with strong fitness scores are identified.  

 

This paper provides very basic and simple concept working behind 

the principle of Genetic algorithm. Researchers have applied the 

potential of GA to solve several computationally challenging issues 

like Drug designing, Image processing and several other domain 

mentions in application section. This paper explains a simple review 

of GA using many scholastic articles, books and open contents over 

internet with basic demonstration using R. 
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